Train and Deploy a Machine Learning Model with Azure Machine Learning (DP-3007)

To train a machine learning model with Azure Machine Learning, you need to make data available and configure the necessary compute. After training your model and tracking model metrics with MLflow, you can decide to deploy your model to an online endpoint for real-time predictions. Throughout this learning path, you explore how to set up your Azure Machine Learning workspace, after which you train and deploy a machine learning model.

Course Information

Price: $695.00
Duration: 1 day
Certification: 
Exam: 
Learning Credits:
Continuing Education Credits:
Course Delivery Options

Check out our full list of training locations and learning formats. Please note that the location you choose may be an Established HD-ILT location with a virtual live instructor.

Train face-to-face with the live instructor.

Access to on-demand training content anytime, anywhere.

Attend the live class from the comfort of your home or office.

Interact with a live, remote instructor from a specialized, HD-equipped classroom near you. An SLI sales rep will confirm location availability prior to registration confirmation.

All Sunset Learning dates are guaranteed to run!

Register

Prerequisites:

 

Target Audience:

  • Machine Learning Professionals
  • Machine Learning Engineers

 

Course Objectives:

  • Make data available in Azure Machine Learning
  • Work with compute targets in Azure Machine Learning
  • Work with environments in Azure Machine Learning
  • Run a training script as a command job in Azure Machine Learning
  • Track model training with MLflow in jobs
  • Register an MLflow model in Azure Machine Learning
  • Deploy a model to a managed online endpoint

 

Course Outline:

Module 1: Make data available in Azure Machine Learning

  • Learn about how to connect to data from the Azure Machine Learning workspace. You're introduced to datastores and data assets.

Module 2: Work with compute targets in Azure Machine Learning

  • Learn how to work with compute targets in Azure Machine Learning. Compute targets allow you to run your machine learning workloads. Explore how and when you can use a compute instance or compute cluster.

Module 3: Work with environments in Azure Machine Learning

  • Learn how to use environments in Azure Machine Learning to run scripts on any compute target.

Module 4: Run a training script as a command job in Azure Machine Learning

  • Learn how to convert your code to a script and run it as a command job in Azure Machine Learning.

Module 5: Track model training with MLflow in jobs

  • Learn how to track model training with MLflow in jobs when running scripts.

Module 6: Register an MLflow model in Azure Machine Learning

  • Learn how to log and register an MLflow model in Azure Machine Learning.

Module 7: Deploy a model to a managed online endpoint

  • Learn how to deploy models to a managed online endpoint for real-time inferencing.

 

Free Microsoft
Copilot Classes

Empower Your Workforce with Copilot for Microsoft 365 (MS-4004)
November 13 | 10:00am EST

Craft Effective Prompts for Microsoft Copilot for Microsoft 365 (MS-4005)
November 14 | 10:00am EST

Microsoft Copilot for Security (SC-5006)
November 15 | 10:00am EST

End-of-Year
Gift Card Giveaway

Gift Card

Sunset Learning is spreading holiday cheer with a giveaway of 5 x $50 Amazon Gift Cards! Enter below for your chance to win.